Gapless Color Superconductivity in Quark Matter

Igor A. Shovkovy

Institut für Theoretische Physik
Johann Wolfgang Goethe Universität
Frankfurt am Main, Germany
Collaborator(s)

- Mei Huang
 (ITP, Goethe-University & Tsinghua University, Beijing)

References

 hep-ph/0302142

- M. Huang and I. Shovkovy, in preparation...
Phase diagram of QCD

Dense quark matter is a color superconductor!
[Barrios,78], [Bailin & Love,84], [Alford et al.,98], [Rapp et al.,98],…

Where to find CSC?

- Interior of compact stars:
 M-R relation, surface temperature, neutrino flux, magnetic field, glitches, strangelets in cosmic rays, R-mode instability, etc.

- Heavy ion collisions (?)
- Cosmic strangelets (?)
Motivation: compact stars

Color superconductivity \rightarrow gap in quasiparticle spectrum

- Thermodynamic properties (equation of state)
 - mass-radius relation
 - internal star structure
- Transport properties (conductivities, viscosities, mean free paths)
 - cooling rate
 - r-mode instability
 - glitches (crystalline phase)
- Other properties
 - magnetic field generation/penetration
 - rotational vortices
Neutrality vs. color superconductivity

- The “best” 2SC phase appears when $n_d \approx n_u$,
- but neutral matter appears when $n_d \approx 2n_u$
- Electrons do not help (!):

\[n_d \approx 2n_u \Rightarrow \mu_d \approx 2^{1/3}\mu_u \Rightarrow \mu_e = \mu_d - \mu_u \approx \frac{1}{4}\mu_u \]

Thus, \[n_e \approx \frac{1}{4^3} \frac{n_u}{3} \ll n_u \]

- Cooper pairing with a mismatch between Fermi surfaces of pairing quarks:

\[\mu_d - \mu_u = \mu_e \]

Gaps: $(\Delta + \mu_e/2)$ and $(\Delta - \mu_e/2)$
Gapless superconductivity

- Diquark coupling strength η

 (i) “strong”:
 $\eta > \eta_2^{cr} \rightarrow 2SC$

 (ii) “weak”:
 $\eta < \eta_1^{cr} \rightarrow \text{normal}$

 (iii) “intermediate”:
 $\eta_1^{cr} < \eta < \eta_2^{cr} \rightarrow g2SC$

- What is g2SC?
- Is g2SC truly stable?

What are the physical properties of the g2SC at $T = 0$ and $T \neq 0$?
Stability

Eff. potential at $T = 0$

Eff. potential at $T \neq 0$

Thus, g2SC is stable provided $n_Q = 0$ is enforced \textit{locally}
Quasiparticle spectrum in 2SC phase
Quasiparticle spectrum in g2SC phase

\[E_{\Delta^-}(p) \]
\[E_{\Delta^+}(p) \]

\[\delta \mu - \Delta \]
\[\delta \mu + \Delta \]

\[\mu_{ur} \]
\[\mu^- \]
\[\mu \]
\[\mu^+ \]
\[\mu_{ dg} \]
Temperature dependence of the gap. I.

- Nonmonotonic temperature dependence
- Transitional behavior: g2SC \rightarrow 2SC \rightarrow g2SC \rightarrow normal phase
Temperature dependence of the gap. II.

- Extreme nonmonotonic temperature dependence
- Transitional behavior: normal phase \rightarrow g2SC \rightarrow normal phase
Nonuniversal ratio T_c/Δ_0

- The ratio is *not universal* (unlike in BCS)
- The value of T_c/Δ_0 can be *arbitrarily* large
Summary

- Charge neutrality and β-equilibrium play very important role in studies of quark matter phases
- Gapless 2SC is a stable ground state of quark matter in a range of coupling strengths
- Gapless 2SC presents an unusual realization of the Higgs mechanism
- Temperature dependence of the gap is nonmonotonic
- Ratio T_c/Δ_0 is nonuniversal, and can be arbitrarily large
- There is more to this …
- Gapless quark matter may turn out to be not just a curiosity…