Photon emission from strongly magnetized QGP

Igor Shovkovy
Arizona State University

[X. Wang, I. Shovkovy, L. Yu, M. Huang, Phys. Rev. D 102, 076010 (2020)]
[X. Wang, I. Shovkovy, in preparation]
PHOTONS AS A THERMOMETER OF QGP

Photons in heavy-ion collisions

- Photons are emitted at all stages of evolution
 Photon sources in HIC

- $p_T \lesssim 2$ GeV: thermal emission dominates
- 2 GeV $\lesssim p_T \lesssim 4$ GeV: the jet-plasma contribution dominates
Thermal photons (1)

- The rate of the thermal emission of photons (more precisely, the energy loss rate) is

\[
k^0 \frac{d^3 R}{dk_x dk_y dk_z} = - \frac{1}{(2\pi)^3} \frac{\text{Im} \left[\Pi_{\mu}^\nu(k) \right]}{\exp \left(\frac{k_0}{T} \right) - 1}
\]

- In the case of hot QCD plasma,

![Diagram](image)

- Processes:

![Diagram](image)
Thermal photons (2)

• The approximate result is given by

\[E \frac{dR}{d^3p} = \frac{5}{9} \frac{\alpha \alpha_s}{2\pi^2} T^2 e^{-E/T} \ln \left(\frac{2.912 E}{g^2 T} \right) \]

• There are important corrections from bremsstrahlung and inelastic pair annihilation

• Next to leading order corrections are \(\sim 100\% \)

[Arnold, Moore, Yaffe, JHEP 05 (2013) 010; arXiv:1302.5970]
Thermal photons (3)

- Numerically,

Quarks and Gluons \(T = 200 \text{ MeV} \)

Photon v_2 puzzle

- Most photons are produced early (before flow develops)
- Thus, v_2 for photons should be very small

DIRECT PHOTONS AS A MAGNETOMETER OF QGP
Heavy-ion collisions

- QGP produced at RHIC/LHC is magnetized

\[10^{18} \text{ to } 10^{19} \text{ G} \sim m_{\pi}^2 \sim (100 \text{ MeV})^2 \]

- Using Lienard-Wiechert potential, one finds

\[
eE(t, \mathbf{x}) = \alpha_{\text{EM}} \sum_{n \in \text{protons}} \frac{1 - v_n^2}{R_n^3 \left(1 - \left[\mathbf{R}_n \times \mathbf{v}_n\right]^2/R_n^2\right)^{3/2}} \mathbf{R}_n
\]

\[
eB(t, \mathbf{x}) = \alpha_{\text{EM}} \sum_{n \in \text{protons}} \frac{1 - v_n^2}{R_n^3 \left(1 - \left[\mathbf{R}_n \times \mathbf{v}_n\right]^2/R_n^2\right)^{3/2}} \mathbf{v}_n \times \mathbf{R}_n
\]

[Rafelski & Müller, PRL, 36, 517 (1976)]
[Kharzeev et al., arXiv:0711.0950]
[Skokov et al., arXiv:0907.1396]
[Voronyuk et al., arXiv:1103.4239]
[Deng & Huang, arXiv:1201.5108]
[Bloczynski et al, arXiv:1209.6594]
...
Magnetic field in HIC

- Magnetic field
 - strong in magnitude $\sim m_\pi^2$
 - depends strongly on b
 - nonuniform
 - fluctuates from event to event

[Deng & Huang, Phys. Rev. C 85, 044907 (2012)]
Time dependence

- **Magnetic field**
 - not always \perp to reaction plane
 - short-lived ($\ll 1$ fm/c)
 - conductivity may help a little

Photons from magnetized plasma

- At $\vec{B} \neq 0$, the leading-order polarization tensor leads to a nonzero result!

- All three processes (without the gluon mediation), i.e.,

are allowed by the energy conservation
Photon thermal rate

- The expression for the rate is

\[
\kappa^0 \frac{d^3 R}{d\kappa_x d\kappa_y d\kappa_z} = -\frac{1}{(2\pi)^3} \frac{\text{Im} \left[\Pi^\mu_{\lambda}(\kappa) \right]}{\exp \left(\frac{k_0}{T} \right) - 1}
\]

At \(\vec{B} \neq 0 \), the imaginary part is

\[
\text{Im} \left[\Pi^\mu_{R,\lambda}(\Omega; \kappa) \right] = \sum_{f=u,d} \frac{N_c \alpha_f}{2l_f^3} \sum_{n,n'=0}^{\infty} \frac{dp_z}{2\pi} \sum_{\lambda,\eta=\pm1} \frac{n_F(E_{n,p_z,f}) - n_F(\lambda E_{n',p_z-k_z,f})}{2\eta \lambda E_{n,p_z,f} E_{n',p_z-k_z,f}} \sum_{i=1}^{4} F_i^f \delta \left(E_{n,p_z,f} - \lambda E_{n',p_z-k_z,f} + \eta\Omega \right).
\]

where the Landau level energies are

\[
E_{n,p_z,f} = \sqrt{m^2 + p_{z}^2 + 2n|e_f B|}
\]

Photon thermal rate

- After integrating over p_z, the final expression reads

$$\text{Im} \left[\Pi_{R, \mu}^{\mu} \right] = \sum_{f=u,d} \frac{N_c \alpha_f}{2 \pi l_f^4} \sum_{n>n'} \sum_{n'=0}^\infty \frac{g(n, n') \theta(k_-^f - |k_y|) - \theta(|k_y| - k_+^f)}{\sqrt{[(k_-^f)^2 - k_y^2][(k_+^f)^2 - k_y^2]}} \left(\mathcal{F}_1^f + \mathcal{F}_4^f \right)$$

$$- \sum_{f=u,d} \frac{N_c \alpha_f}{4 \pi l_f^4} \sum_{n=0}^\infty \frac{g_0(n) \theta(|k_y| - k_+^f)}{\sqrt{k_y^2[k_y^2 - (k_+^f)^2]}} \left(\mathcal{F}_1^f + \mathcal{F}_4^f \right),$$

where $g(n, n')$ and $g_0(n)$ are combinations of the Fermi-Dirac distribution functions.

The momentum thresholds are determined by

$$k_\pm^f = \left| \sqrt{m^2 + 2n|e_f B|} \pm \sqrt{m^2 + 2n'|e_f B|} \right|$$

Physics processes

• Real solutions to the energy conservation equation

\[E_{n,p_z,f} - \lambda E_{n',p_z-k_z,f} + \eta \Omega = 0 \]

can be found under the following conditions:

\[q \rightarrow q + \gamma \ (\lambda = +1, \ \eta = -1) : \ \sqrt{\Omega^2 - k_{z-}^2} \leq k_{z-}^f \ \text{and} \ n > n', \]
\[\bar{q} \rightarrow \bar{q} + \gamma \ (\lambda = +1, \ \eta = +1) : \ \sqrt{\Omega^2 - k_{z-}^2} \leq k_{z-}^f \ \text{and} \ n < n', \]
\[q + \bar{q} \rightarrow \gamma \ (\lambda = -1, \ \eta = -1) : \ \sqrt{\Omega^2 - k_{z+}^2} \geq k_{z+}^f, \]
Angular dependence: small k_T

- Non-smooth dependence on ϕ (due to many thresholds)
 Parametrization: $k_x = 0$, $k_y = k_T \cos \phi$ and $k_z = k_T \sin \phi$

- Average rate is maximal at $\phi = \frac{\pi}{2}$ (i.e., \perp to the reaction plane)
Angular dependence: large k_T

- Rate quickly decreases with k_T
- Average rate is maximal at $\phi = 0$ (i.e., \parallel to the reaction plane)
Nonzero elliptic “flow” (v_2)
Thermal rate at $\vec{B} \neq 0$

- The photon production rate
 - decreases with energy (k_T) at large k_T
 - increases with temperature
 - goes to zero when $k_T \to 0$ (quantization effects)
 - and, thus, has a peak at small nonzero k_T

- The thermal rate at $\vec{B} \neq 0$ is relatively large
Quantization @ small k_T

- Quantization is important when $k_T \lesssim \sqrt{|eB|}$

 - Transitions are possible only at large p_z

 $$|p_z| \sim |e_f B| / [k_T(1 + |\sin \phi|)]$$

 - This explains why $\text{Im}(\Pi_\mu^\mu) \to 0$ when $k_T \to 0$

 - Dependence on ϕ also explains the negative v_2!
Anisotropy of photon emission

- The total rate is

\[
\frac{k^0 d^3 R}{dk_x dk_y dk_z} = R_{1\rightarrow2} + R_{2\rightarrow2} + R_{2\rightarrow3} + \cdots
\]

only at \(\vec{B} \neq 0 \)

even at \(\vec{B} = 0 \)

- \(R_{2\rightarrow1} \):

\(n > n' \)

\(q \)

(\(n, p_z \))

\(q \)

(\(n', p_z - k_z \))

\(\gamma \)

\(k \)

\(n < n' \)

\(\bar{q} \)

(\(n', p_z - k_z \))

\(\gamma \)

\(k \)

\(\gamma \)

\(n', p_z \)

\(\bar{q} \)

\(q \)

\(\gamma \)

\(k \)

\(q \)

\(\bar{q} \)

\(\gamma \)

\(q \)

\(\bar{q} \)

\(\gamma \)

\(q \)

\(\bar{q} \)

\(\gamma \)

\(n, p_z \)

\(n, p_z \)

\(n, p_z \)

\(n, p_z \)
Magnetic enhancement of v_2

- Estimate of v_2 in a hot magnetized QGP

\[\mathcal{R}_{2\to1} : \quad v_2 \sim 20\% \]

- Noting that

\[\mathcal{R}_{2\to1} \geq \mathcal{R}_{2\to2} \geq \mathcal{R}_{2\to3} \]

- Naïve estimate at $p_T \sim 1$ GeV gives

\[6.7\% \leq v_2 \leq 20\% \]

- A more realistic estimate should consider non-isotropic expansion & non-thermal processes
Summary

• At $\vec{B} \neq 0$, photons are produced at 0th order in α_s

$$\begin{align*}
\text{(i) } q &\rightarrow q + \gamma, \\
\text{(ii) } \bar{q} &\rightarrow \bar{q} + \gamma, \\
\text{(iii) } q + \bar{q} &\rightarrow \gamma
\end{align*}$$

• The annihilation contribution grows with k_T

• Quantization effects are important for $k_T \lesssim \sqrt{|eB|}$

• Photon emission has pronounced ellipticity

 \[v_2 < 0 \text{ at small } k_T \left(k_T \lesssim \sqrt{|eB|} \right) \]

 \[v_2 > 0 \text{ at large } k_T \left(k_T \gtrsim \sqrt{|eB|} \right) \]

• Nonzero ellipticity of thermal emission could be used to "measure" the magnetic field