Research at the Tip of a Pencil

Igor Shovkovy

College of Letters and Sciences
Arizona State University
“If anybody says he can think about quantum physics without getting giddy, that only shows he has not understood the first thing about it.”

Niels Bohr
— Relativistic systems (~ speed of light)

— Extreme densities (~5n₀, n₀ ≈ 3 × 10^{17} kg/m³)

— Extreme temperatures (~10^{12} Kelvin)

— Extreme magnetic fields (~10^{18} Gauss)
• Examples of relativistic matter
 – Electrons, protons, quarks inside compact stars (very dense matter)
 – Quark gluon plasma in heavy ion collisions (a very hot fireball)
 – Hot matter in the Early Universe (an extremely hot world)
 – Massless particles (e.g., quasiparticles in graphene and Dirac semimetals)
• Non-relativistic
 – Particles move much slower than the speed of light
 – Kinetic energies are much smaller than the rest energy

 \[E_{\text{kin}} \ll E_{\text{rest}} : \quad E = c \sqrt{p^2 + m^2 c^2} \approx mc^2 + \frac{p^2}{2m} \]

• Relativistic
 – Particle velocities approach the speed of light
 – Kinetic energies are comparable to, or larger than \(E_{\text{rest}} \)

 \[E_{\text{kin}} \geq E_{\text{rest}} : \quad E = c \sqrt{p^2 + m^2 c^2} \approx c p \]
SUPER-DENSE MATTER

• What happens when you squeeze matter to very high density? (e.g., neutrons inside neutron stars)

Pauli exclusion principle: fermions cannot occupy the same states (they end up filling out all quantum states from $p_{\text{min}} \approx 0$ to $p_{\text{max}} \propto \hbar n^{1/3}$)

$$p_{\text{max}} \propto 200 \left(\frac{n}{1 \text{ fm}^3} \right)^{1/3} \text{ MeV/c}$$
• What happens when you heat matter to very high temperature? (e.g., matter in heavy ion collisions)

Heat is equivalent to kinetic energy: average kinetic energy of particles is proportional to temperature:

\[p \propto k_B T / c \sim 200 \left(\frac{k_B T}{200 \text{ MeV}} \right) \text{MeV/c} \]
Massless Particles

• Can matter be made of massless particles?

 Yes! Electron quasiparticles masquerade as massless particles in some materials (no rest mass energy)

• Examples:

 – Graphene
 – Bi$_{1-x}$Sb$_x$ alloy with $x \approx 0.03$
 – cadmium arsenide Cd$_3$As$_2$
 – potassium bismuthide Na$_3$Bi

 2D (planar) materials
 3D materials

April 8, 2015
MAGNETIC FIELDS IN NATURE

• Strong magnetic fields are common inside compact stars
 – 10^{10} to 10^{15} Gauss

• In heavy ion collisions, positive ions generate short-lived ($\Delta t \approx 10^{-24}$ s) magnetic fields
 – 10^{18} to 10^{19} Gauss

• Early Universe
 – up to 10^{24} Gauss

• High Magnetic Field Laboratory
 – 4.5×10^5 Gauss
SOME RESEARCH DIRECTIONS

– Dynamical origin of mass

– Interplay of symmetry and dynamics

– Exotic phases of matter at extreme densities/temperatures

– Effect of superstrong magnetic fields on vacuum/matter
“It is only slightly overstating the case to say that physics is the study of symmetry”

Philip W. Anderson

SYMMETRY & ORIGIN OF MASS
What is symmetry?

• Wikipedia:
 – sense of harmonious and beautiful proportion and balance
 – invariance under certain transformation

• Example:

original rotate 18° rotate 36° rotate 54° rotate 72°

Invariance under 72° rotation
• Underlying laws are symmetric, but the system/ground state changes under a symmetry transformation

• Symmetry may refer to “internal” symmetries (e.g. rotations in color/flavor spaces, rescaling, etc.)
Massless $(m=0)$ fermions enjoy chiral symmetry ("rotation" of left-handed and right-handed particles in flavor space)

- Introduction of a non-zero mass for fermions breaks chiral symmetry

\[|m\rangle \propto C_1 |L\rangle + C_2 |R\rangle \approx \langle L | R \rangle \]
Symmetry of Hardons

- Hadron properties strongly suggest an approximate chiral symmetry that is broken “spontaneously”

 - Mass hierarchy of pions and nucleons ($m_\pi << m_N$)
 - Energy dependence of pion-nucleon interaction
 - Discovery of multiplets of hadrons with similar properties
 - Relationships between various interaction strengths
 - Properties of quark-gluon plasma in heavy-ion collision
How Symmetry Breaks?

• Because of strong interactions, almost massless quarks \((m \approx 5 \text{ Mev}/c^2)\) become heavy \((m \approx 300 \text{ Mev}/c^2)\)

• The analogue of water is a certain \((\text{quark-antiquark})\) Bose condensate in the physical vacuum
Some Key Points

• Interaction must be sufficiently strong

• Bose condensate fills/defines the vacuum

• Fermions (e.g., quarks, protons, etc.) become massive

• Light (massless) pions are predicted

• Mass can be “melted” away by high temperature/density
MAGNETIC CATALYSIS

IDEA OF MAGNETIC CATALYSIS

• Magnetic field *constrains* perpendicular motion of charged particles
• Even *arbitrarily* weak attractive interaction is sufficient to form bound states
• Condensate forms & symmetry breaks down
• Fermions become massive!

This is the essence of magnetic catalysis
Dynamical Mass

- A nonzero “dynamical” mass m_{dyn} is generated

$$m_{\text{dyn}}^{(2D)} \propto \sqrt{\alpha} \sqrt{|eB|}, \quad \text{and} \quad m_{\text{dyn}}^{(3D)} \propto \sqrt{|eB|} e^{-C/\alpha}$$

- This happens even at the weakest interaction (“catalysis”)

- The phenomenon is universal (most model details are irrelevant)

- Dimensional reduction is the key ingredient (it makes interaction more efficient)
APPLICATIONS
It is a single atomic layer of graphite
[Novoselov et al., Science 306, 666 (2004)]

2D crystal with hexagonal lattice of carbon atoms

Interesting basic physics

Great promise for applied physics …
GRAPHENE

• 100 times stronger than steel
• great heat conductor
• great conductor of electricity
• nearly transparent

Galapad Settler retails for US$399. Photo: Galapad
DIRAC FERMIONS

- Charge carriers (~ electrons)
 - spin-$\frac{1}{2}$ fermions
 - have large speed, $v \approx \frac{c}{300}$
 - behave like massless particles

- In essence, they behave like relativistic particles ("Dirac fermions") in vacuum
Magnetic Catalysis in Graphene

• Prediction:

 A nonzero dynamical mass should be generated in a strong magnetic field

 [Khveshchenko, PRL 87, 206401 (2001)]
 [Gorbar, Gusynin, Miransky, Shovkovy, PRB 66 (2002) 045108]

• Possible complications:

 – many types of “Dirac” masses in 2D
 – competition with quantum Hall ferromagnetism
 – nonzero electron/hole density
 – impurities, lattice defects, ripples, etc.

• How to test this experimentally?
• General setup

– Current starts to run:

– Steady state:

– Hall conductivity σ_{xy}:

$$j_x = \sigma_{xy} E_y$$
QHE in Graphene

\[E_n = \text{sgn}(n) \sqrt{2e\hbar v_F^2 |n| B} \]

\[\sigma_{xy} = \frac{\nu e^2}{h} = \frac{4e^2}{h} \left(n + \frac{1}{2} \right) \]

Theory

Experiment
ANOMALOUS QHE

- New plateaus are observed at
 \(\nu = 0 \)
 \(\nu = \pm 1 \)
 \(\nu = \pm 3 \)
 \(\nu = \pm 4 \)

[Novoselov et al., Science 315, 1379 (2007)]
[Checkelsky et al., Phys. Rev. Lett. 100, 206801 (2008)]
[Xu Du et al., Nature 462, 192 (2009)]
Is “3D Graphene” Possible?

• “Old” 3D materials with Dirac quasiparticles:
 – Bi$_{1-x}$Sb$_x$ alloy

• “New” 3D Dirac materials:
 – Na$_3$Bi [Liu et al., Science 343, 864 (2014)]
 – Cd$_3$As$_2$ [Neupane et al., Nat. Commun. 5, 3786 (2014)]
Cadmium Arsenide

3D Dirac semimetal Cd$_3$As$_2$

Dispersion

\[k_z = \pm k_{dp} \]

E
\[k_x \]
\[k_y \]
\[k_z \]
\[k_x = k_y = 0 \]

n-doped

p-doped

Fermi surface

In the vicinity of 3D Dirac points:

\[E = v_x k_x + v_y k_y + v_z k_z \]

[Liu et al., Science 343, 864 (2014)]
SUMMARY

• Relativistic matter in magnetic field is relevant for many branches of physics

• The underlying physics is very rich

• A partial list of phenomena
 – Magnetic catalysis
 – Chiral magnetic effect
 – Chiral shift
 – Chiral magnetic spiral
 – Magnetic properties of Dirac semimetals
 – Quantum Hall Effect in graphene
 – …
Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals

Vladimir A. Miranskya, Igor A. Shovkovyb

a Department of Applied Mathematics, Western University, London, Ontario N6A 5B7, Canada
b College of Letters and Sciences, Arizona State University, Mesa, AZ 85212, USA

Accepted 16 February 2015, Available online 9 March 2015
editor: S. Reddy

doi:10.1016/j.physrep.2015.02.003