One-Loop Low Energy Effective Action in QED
(worldline method)
by Igor Shovkovy

Co-author:

- Valery Gusynin (ITP, Kiev, Ukraine)

References:

- V.P. Gusynin and I.A. Shovkovy, hep-th/9804143
Outline

1. Effective action in QED
 - its meaning and range of validity;
 - status of the problem.

2. Method of calculation
 - worldline formalism;
 - perturbation theory and Feynman rules.

3. General result (derivative expansion).

4. Two special cases.

5. Conclusion.
1. The effective action in QED

The original theory \rightarrow an effective theory
(exact) (approximate)

- Reason:
 to get rid of irrelevan degrees of freedom.

- Low-energy dynamics in QED

 1. massive fermions decouple;
 2. electromagnetic field is relevant;
 3. virtual fermions \rightarrow vacuum currents;
 4. Maxwell equations \rightarrow nonlinear.
• In QED $\int (\text{fermions}) \rightarrow$ Effective Action.

• Results ($F^{\mu\nu}$ is constant or varies slowly).

1. The Heisenberg–Euler eff. action (1936)

\[
\mathcal{L}_{HE} = \mathcal{F} + \frac{2\alpha^2(4\mathcal{F}^2 + 7\mathcal{G}^2)}{45\pi^2m^4} + \ldots \tag{1}
\]

where $\mathcal{F} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ and $\mathcal{G} = \frac{1}{8}e^{\mu\nu\lambda\kappa}F_{\mu\nu}F_{\lambda\kappa}$.

2. The Schwinger effective action (1951)

\[
\mathcal{L}_S = \mathcal{F} + \int_0^{\infty} \frac{ds}{8\pi^2s^3}e^{-im^2s}\left[esK_+ \coth(esK_+) \times esK_+ \cot(esK_-) - 1 - \frac{2e^2s^2}{3}\mathcal{F}\right], \tag{2}
\]

where $K_{\pm} = \sqrt{\mathcal{F}^2 + \mathcal{G}^2 \pm \mathcal{F}}$.

• Derivative expansion

1. The Hauknes expansion in $1/m^2$ (1984)

\[\mathcal{L}_H = \mathcal{L}_{HE} + \frac{\alpha}{360\pi m^2} \left(\frac{1}{9} F^{\mu\nu} F_{\mu\nu,\lambda}^\lambda + \frac{7}{2} F^{\mu\nu,\lambda} F_{\mu\nu,\lambda} - F^{\lambda\mu,\nu} F_{\lambda\mu,\nu} \right) + O \left(\frac{\alpha^2}{m^6} \right), \]

2. Derivative expansion for a special case (Lee, Pac, Shin, 1989) in spinor QED$_{3+1}$:

\[\mathcal{G} = 0 \quad \text{and} \quad F^{\mu\nu} = \Phi(x) F^{\mu\nu} \]

\[\mathcal{L}_{der} = \mathcal{L}_S - i \frac{\partial \mu \Phi \partial^\mu \Phi}{(8\pi)^2 e^2 \Phi^4} \int_0^\infty \frac{ds}{s} e^{-im^2s} \]

\[\times \frac{d^3}{ds^3} \left[es\Phi \tanh(es\Phi) \right] \]

3. Arbitrary background $F_{\mu\nu} = \text{const}$?

OUR RESULT (below)
2. Method of calculation

- One-loop effective action

\[W^{(1)}(A) \equiv \int d^nx \mathcal{L}^{(1)} = -i \ln \text{Det}(i\overline{D} - m) \]

\[= -\frac{i}{2} \ln \text{Det} \left(D^2_{\mu} + \frac{e}{2} \sigma_{\mu\nu} F^{\mu\nu} + m^2 \right), \tag{5} \]

so that

\[\mathcal{L}^{(1)}(A) = \frac{i}{2} \int_0^\infty \frac{d\tau}{\tau} e^{-im^2\tau} \text{tr} \langle x | \exp(-i\tau H) | x \rangle, \tag{6} \]

where the “Hamiltonian” is given by

\[H = -\Pi_\mu \Pi^\mu + \frac{e}{2} \sigma_{\mu\nu} F^{\mu\nu}(x), \tag{7} \]

\[\Pi_\mu = -i(\partial_\mu - ieA_\mu). \]

- \(\text{tr} \langle z | U(\tau) | y \rangle \) — a quantum mechanical (!) evolution operator.
• Quantum mechanical path integral (!):

\[tr(z|U(\tau)|y) = \frac{1}{M} \int \mathcal{D}[x, \psi] e^{iS_{bos} + iS_{fer}} \]

with

\[L_{bos}(x) = -\frac{1}{4} \frac{dx_\nu}{dt} \frac{dx^\nu}{dt} - eA_\nu(x) \frac{dx^\nu}{dt} , \]

\[L_{fer}(\psi, x) = i\psi_\nu \frac{d\psi^\nu}{dt} - ie\psi^\nu \psi^\lambda F_{\nu\lambda}(x). \]

and boundary conditions

\[x(0) = y, \quad x(\tau) = z, \quad \psi(0) = -\psi(\tau). \]

• Fock-Schwinger gauge

\[A_\nu(x) = \frac{1}{2} (x^\lambda - y^\lambda) F_{\lambda\nu}(y) \]

\[+ \frac{1}{3} (x^\lambda - y^\lambda)(x^\sigma - y^\sigma) \partial_\sigma F_{\lambda\nu}(y) \]

\[+ \frac{1}{8} (x^\lambda - y^\lambda)(x^\sigma - y^\sigma)(x^\mu - y^\mu) \partial_\sigma \partial_\mu F_{\lambda\nu}(y) + \ldots \]

• \(F_{\mu\nu} = \text{const} \rightarrow \) Gaussian integral
• Derivative terms → “interactions”

• Well defined perturbative expansion in N_{der}

• Feynman rules

1. All vacuum diagrams

2. The propagators:

\[
\langle Tx_\mu(t_1)x_\nu(t_2) \rangle \quad \rightarrow \quad \mu \quad \ldots \quad \nu
\]

\[
\langle T\psi_\mu(t_1)\psi_\nu(t_2) \rangle \quad \rightarrow \quad \mu \quad \rightarrow \quad \nu
\]

3. The interactions

\[
\frac{eF_{\nu_0\nu_1\cdots\nu_{n+1}}}{n!(n+2)} \frac{dx^{\nu_0}}{dt} x^{\nu_1} \cdots x^{\nu_{n+1}}, \quad \text{(Fig. 1)}
\]

\[
\frac{ie}{n!} F_{\lambda\mu,\nu_1\cdots\nu_n} \psi^\lambda \psi_\mu x^{\nu_1} \cdots x^{\nu_n}, \quad \text{(Fig. 2)}
\]

generate two types of VERTICES
• A few comments on the pertur. theory
 1. Infinite number of different vertices
 2. Still, a finite number of diagrams in each order, N_{der}, of the pertur. theory
 3. Disconnected diagrams are included
 4. All derivatives come from the vertices
• For example, (a 2-derivative contribution)
• Problem of propagators,
\[D_{\mu\nu}(t_1, t_2) = D(t_1, t_2, F.)_{\mu\nu} \] (???)

• Set of matrices \(A_{(j)\mu\nu} \):
\[F^{\lambda\mu} A_{(j)\mu\nu} = A^{\lambda\mu}_{(j)} F_{\mu\nu} = f_j A_{(j)\nu}^{\lambda} \] (13)
where
\[f_0 = 0, \quad f_{\pm 1} = \pm \sqrt{2F} \quad (2 + 1)D \] (14)
\[f_{1,2} = \pm iK_-, \quad f_{3,4} = \pm K_+ \quad (3 + 1)D \] (15)

• \(A^{\mu\nu}_{(j)} \) satisfy the identities
\[\sum_j A^{\mu\nu}_{(j)} = \eta^{\mu\nu}, \quad A^{\mu}_{(j)\mu} = 1, \quad (16) \]
\[A^{\mu\nu}_{(k)} A_{(j)\nu\lambda} = A^{\mu}_{(j)\lambda} \delta_{kj} \] (17)

• Therefore,
\[D(t_1, t_2, F.)_{\mu\nu} = \sum_j D(t_1, t_2, f_j) A_{(j)\mu\nu} \] (18)
3. General result (derivative expansion)

\[
\langle x|U_{bos}(\tau)|x\rangle = \langle x|U_{bos}(\tau)|x\rangle_0 \\
\times \left\{ 1 - \frac{i}{8} e F_{\nu\lambda,\mu\kappa} \sum_{j,l} C^V_{(j,l)} (A^{\nu\lambda}_{(j)} A^{\mu\kappa}_{(l)} + 2A^{\nu\mu}_{(j)} A^{\lambda\kappa}_{(l)}) \\
+ \frac{i}{18} e^2 F_{\nu\lambda,\mu,\rho,\sigma,\kappa,\lambda} \sum_{j,l,k} \left[C^{VV}_{1(\nu\lambda,\mu,\rho,\sigma,\kappa,\lambda)} A^{\nu\lambda}_{(j)} A^{\mu\sigma}_{(l)} A^{\lambda\kappa}_{(k)} + C^{VV}_{2(\nu\lambda,\mu,\rho,\sigma,\kappa,\lambda)} A^{\nu\lambda}_{(j)} A^{\mu\sigma}_{(l)} A^{\lambda\kappa}_{(k)} \right. \\
+ C^{VV}_{3(\nu\lambda,\mu,\rho,\sigma,\kappa,\lambda)} A^{\nu\lambda}_{(j)} A^{\mu\sigma}_{(l)} A^{\lambda\kappa}_{(k)} + C^{VV}_{4(\nu\lambda,\mu,\rho,\sigma,\kappa,\lambda)} A^{\nu\lambda}_{(j)} A^{\mu\rho}_{(l)} A^{\lambda\kappa}_{(k)} + C^{VV}_{5(\nu\lambda,\mu,\rho,\sigma,\kappa,\lambda)} A^{\nu\lambda}_{(j)} A^{\mu\rho}_{(l)} A^{\lambda\kappa}_{(k)} \right]\right\}
\]

(19)

(in scalar QED) where

\[
\langle x|U_{bos}(\tau)|x\rangle_0^{3+1} = -\frac{i}{(4\pi\tau)^2 \sin(e\tau K_-) \sinh(e\tau K_+)} \frac{(e\tau K_-)(e\tau K_+)}{(4\pi\tau)^2 \sin(e\tau K_-) \sinh(e\tau K_+)}
\]

and

\[
\langle x|U_{bos}(\tau)|x\rangle_0^{2+1} = -\frac{\exp[-i\pi/4]}{(4\pi\tau)^{3/2}} \frac{(e\tau \sqrt{2F})}{\sinh(e\tau \sqrt{2F})}
\]

\[
\frac{(e\tau \sqrt{2F})}{\sinh(e\tau \sqrt{2F})}
\]
• Expansion in powers of $1/m^2$ (in τ)

\[
\text{tr}\langle x|U_{\text{scal}}(\tau)|x\rangle = \text{tr}\langle x|U_{\text{scal}}(\tau)|x\rangle_0 + \frac{ie^2\tau^3}{30} F^{\nu\lambda} F^{\nu\lambda,\mu} \mu - \\
- \frac{ie^2\tau^3}{180} \left(4 F^{\nu\lambda,\mu} F^{\nu\lambda,\mu} + F^{\nu\lambda,\mu} \right) + \ldots \}
\]

in scalar QED, and

\[
\text{tr}\langle x|U_{\text{spin}}(\tau)|x\rangle = \text{tr}\langle x|U_{\text{spin}}(\tau)|x\rangle_0 \quad (21)
\times \left\{ 1 + \frac{ie^2\tau^3}{20} F^{\nu\lambda} F^{\nu\lambda,\mu} \right. + \\
+ \frac{ie^2\tau^3}{180} \left(\frac{7}{2} F^{\nu\lambda,\mu} F^{\nu\lambda,\mu} - F^{\nu\lambda,\mu} \right) + \ldots \}
\]

in spinor QED.

• Range of validity

\[
\frac{|eF|}{m^2} \ll 1 \quad \text{and} \quad \frac{\partial|eF|^2}{m^2(eF)^2} \ll 1
\]

• Eq. (21) \rightarrow Hauknes result.
4. Two special cases

- Pure magnetic background

Scalar QED

\[
\mathcal{L}_{\text{der}}^{(D)}(B) = \frac{e^2 (\partial_\perp B)^2}{(4\sqrt{\pi})^D |eB|}\left(\frac{6-D}{2}\right) \int_0^\infty \frac{d\omega}{\omega^{D-2}} e^{-\frac{m^2}{|eB|}\omega} \left(\frac{d^3}{d\omega^3} + \frac{d}{d\omega}\right) \left(\frac{\omega}{\sinh \omega}\right),
\]

--- Spatial derivatives → energy decrease (if $|eB|/m^2 < \text{Const}$).

Spinor QED

\[
\mathcal{L}_{\text{der}}^{(D)}(B) = -\frac{e^2 (\partial_\perp B)^2}{4(2\sqrt{\pi})^D |eB|}\left(\frac{6-D}{2}\right) \int_0^\infty \frac{d\omega}{\omega^{D-2}} e^{-\frac{m^2}{|eB|}\omega} \left(\frac{d^3}{d\omega^3}\right)(\omega \coth(\omega)),
\]

--- Spatial derivatives → energy decrease.

- An instability?
• Pure electric background

Spinor QED

\[
\mathcal{L}_{der}^{(D)}(E) = \frac{e^2 (\partial_{\perp} E)^2}{4(2\sqrt{\pi})^D |eE|^{6-D/2}} \int_0^\infty \frac{d\omega}{\omega^{D-2}} e^{-i\frac{m^2}{|eE|}\omega} \times \frac{d^3}{d\omega^3} (\omega \coth \omega). \quad (24)
\]

where \((\partial_{\perp} E)^2 \equiv (\partial_0 E \partial_0 E - \partial_1 E \partial_1 E)\).

• Correction to \(\text{Im} \mathcal{L}(E)\)
(by definition, \(\sigma \equiv \frac{m^2 \pi}{|eE|}\))

\[
\text{Im} \mathcal{L}_{der}^{(2+1)} = \frac{e^2 (\partial_{\perp} E)^2}{2^8 \pi^3 |eE|^{3/2}} \sum_{n=1}^\infty \frac{\exp(-\sigma n)}{n^{5/2}} \times [15 + 18\sigma n + 12(\sigma n)^2 + 8(\sigma n)^3], \quad (25)
\]

\[
\text{Im} \mathcal{L}_{der}^{(3+1)} = \frac{e^2 (\partial_{\perp} E)^2}{2^6 \pi^4 |eE|} \sum_{n=1}^\infty \frac{\exp(-\sigma n)}{n^3} \times [6 + 6\sigma n + 3(\sigma n)^2 + (\sigma n)^3], \quad (26)
\]
• The corrections are finite as \(m \to 0 \)
5. Conclusion

1. Derivative expansion of the one-loop low-energy effective action in QED$_{2+1}$ and QED$_{3+1}$ (scalar and spinor).

2. All known limits.

3. Explicit expressions for the probability of the particle pairs creation by an electric field due to derivatives.

4. A direct test of breaking the derivative expansion as $m \to 0$.

5. Looking for applications...