Electron hydrodynamics in solids

Pavel Sukhachov
NORDITA

May 13, 2020
Outline

1. Basics of hydrodynamics
2. Hydrodynamics in solids and experimental observations
3. Consistent hydrodynamics in Weyl semimetals and electron flows
Basics of hydrodynamics
Definition of hydrodynamics

- **Hydrodynamics** is the macroscopic theory that studies the motion of various fluids (including gases).

- Key variables:
 - Fluid velocity: \(u = u(t, r) \)
 - Particle density: \(n = n(t, r) \)
 - Energy density: \(\epsilon = \epsilon(t, r) \)

- Hydrodynamics is based on the conservation laws: momentum, mass, and energy.

[Images of Archimedes, Leonhard Euler, Daniel Bernoulli, Claude-Louis Navier, and George Stokes]
Key equations

- **Navier-Stocks equation**:
 \[n \left(\frac{\partial u}{\partial t} + (u \cdot \nabla) u \right) = -\nabla P + \eta \Delta u + \left(\zeta + \frac{\eta}{3} \right) \nabla (\nabla \cdot u). \]

- Advection term
- Diffusion term
- Compressibility

\(\eta \) is the shear viscosity
\(\zeta \) is the bulk viscosity
Key equations

- **Heat transfer** equation:

\[nT \left[\partial_t s + (u \cdot \nabla)s \right] = \nabla_j \kappa \nabla_j T + \frac{\eta}{2} \left(\partial_j u_i + \partial_i u_j - \frac{2}{3} \delta_{ij} \partial_l u_l \right)^2 + \zeta (\nabla \cdot u)^2 \]

\(s \) is the entropy density \(\kappa \) is the thermoconductivity

- **Continuity** equation:

\[\partial_t n + (\nabla \cdot J) = 0. \]

\(J = nu \) is the particle current density
Reynolds number and turbulence

- Reynolds number:
 \[\text{Re} = \left| \frac{\eta \nabla_j \nabla_j u_i}{u_j \nabla_j u_i} \right| = \frac{n u L}{\eta} = \frac{u L}{\nu} \]

 \(\text{Re} \ll 1 \) **laminar** (layered) flow \quad \(\text{Re} \gg 1 \) **turbulent** (chaotic) flow

- Vortices and turbulence:

 von Kármán vortex street
Subfields of fluid dynamics

The number of subfields in fluid dynamics is numerous:
- Aerodynamics
- Magneto-hydrodynamics
- Geophysical fluid dynamics and meteorology
- Hemodynamics
- etc.

System scales range from fm to parsec.
Hydrodynamics in solids and experimental observations
Two main regimes

Nonhydrodynamic regimes: $l_{MR} \ll l_{MC}, L$, where L is the sample size. [J. Zaanen, Science 351, 1058 (2016)]

Hydrodynamic regime: $l_{MC} \ll L \ll l_{MR}$.

- Ballistic regime $l_{\text{eff}} \sim L$
- $R(T) \sim T^{-2}$ is affected by e^-e^- collisions $l_{\text{eff}} \sim L^2 / l_{ee}$
- $R(T) \sim T^5$ stems from electron-phonon interactions
- $R(T) \sim \frac{1}{l_{\text{eff}}}$
Experimental observations

- Viscous contribution to the resistance of 2D metal PdCoO$_2$ (Poiseuille flow) [P.J.W. Moll et al., Science 351, 1061 (2016)]

 - Higher than ballistic transport in constrictions [H. Guo et al., PNAS 114, 3068 (2017); R. Krishna Kumar et al., Nat. Phys. 13, 1182 (2017)]
 - Visualization of the Poiseuille flow via the Hall field profile [J.A. Sulpizio et al., Nature 576, 75 (2019)]
Backflows in graphene and GaAs

Whirlpools

Negative potential regions

[D.A. Bandurin et al., Science 351, 1055 (2016)]

Electron flow through a constriction

Theory
[H. Guo et al., PNAS USA 114, 3068 (2017)]

Experiment
[R. Krishna Kumar et al., Nat. Phys. 13, 1182 (2017)]
Visualizing electron flow: Hall voltage

[J.A. Sulpizio, L. Ella, A. Rozen et al., Nature 576, 75 (2019)]

single electron transistor

$$E_y = \frac{B}{en} \left(j_x + \frac{t_{ee}^2}{2} \partial_y^2 j_x \right)$$

$$B = 12.5 \text{ mT}$$ \hspace{1cm} \text{ballistic} \hspace{1cm} n = -6 \times 10^{11} \text{ cm}^{-2} \hspace{1cm} \text{hydrodynamic}

Ballistic \hspace{1cm} T=7.5K

Hydrodynamic \hspace{1cm} T=75K
Visualizing electron flow: phase diagram

Momentum-relaxing mean-free path

e^-e^- collision length

Curvature of the Hall voltage

Boltzmann theory
Dirac fluid and WF law violation

Wiedemann-Franz law:

\[L \equiv \frac{\kappa_e}{\sigma T} = \frac{\pi^2}{3e^2} = L_0 \]

Electric transport is sensitive to the \(h^+ e^- \) collisions

Dirac fluid regime
Preturbulent regimes in graphene

\[T \gg \mu \]
\[\eta \approx 0.45 \frac{T^2}{4\hbar v_F^2 \alpha^2} \]
\[u \approx 10^5 \text{ m/s} \]
\[L \approx 5 \text{ \mu m} \]
\[\nu_{\text{eff}} = \frac{v_F^2 \eta}{(Ts)} \]
\[\approx 5 \times 10^{-3} \text{ m}^2/\text{s} \]
\[\text{Re} = \frac{sT L u}{v_F^2 \eta} = \frac{uL}{\nu_{\text{eff}}} \]
\[\omega_{\text{shedding}} \sim 0.1 \text{GHz} \]
Hydrodynamics in Weyl semimetals

- Weyl semimetals WP$_2$ [J. Gooth et al., Nat. Commun. 9, 4093 (2018)]

\[\rho = \rho_0 + \rho_1 w^\beta \]

\[L = \frac{\kappa \rho}{T}, \quad L_0 = \frac{\pi^2 k_B^2}{3 e^2} \]
Consistent hydrodynamic in Weyl semimetals

[E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, and P.O. Sukhachov, Phys. Rev. B 97, 121105(R) (2018); 97, 205119 (2018); 98, 035121 (2018)]
Low energy Weyl fermions

\[H_0(k) = \begin{pmatrix} \nu_F \sigma \cdot (k - b) + b_0 & 0 \\ 0 & -\nu_F \sigma \cdot (k + b) - b_0 \end{pmatrix}. \]

Chiral shift parameter \(-\vec{b} \cdot \vec{\gamma} \gamma_5\)

[E.V. Gorbar, V.A. Miransky, and I.A. Shovkovy, Phys. Rev. C 80, 032801(R) (2009)]
Berry curvature

- Consider the adiabatic evolution of a system [M.V. Berry, Proc. R. Soc. A 392, 45 (1984)]. At each time moment, the system is at its instantaneous eigenstate:
 \[H = H(k), \quad H(k)\phi_n(k) = \epsilon_n\phi_n(k). \]

- For a closed trajectory in the parameter space, the wave function is:
 \[\psi(t) = e^{-i\gamma(t)}e^{-i \int_0^t dt' \epsilon_n(k(t'))}\phi_n(k) \]

- The Berry phase and the Berry connection:
 \[\gamma(t) = \oint d\mathbf{k}\mathcal{A}(\mathbf{k}), \mathcal{A}(\mathbf{k}) = -i\phi_n^\dagger(\mathbf{k})\nabla_{\mathbf{k}}\phi_n(\mathbf{k}). \]

- The Berry curvature:
 \[\Omega = \nabla_{\mathbf{k}} \times \mathcal{A}(\mathbf{k}), \Rightarrow \quad \Omega = \pm \frac{\mathbf{k}}{2\hbar k^3} \]

The Berry curvature and its field lines for the Weyl semimetal
Chiral kinetic equation

Boltzmann equation:

\[
\left[1 - \frac{e}{c}(\mathbf{B}_{\lambda} \cdot \Omega_{\lambda})\right] \partial_t f_{\lambda} + \left\{-e\tilde{E}_{\lambda} - \frac{e}{c} [\mathbf{v}_{\pi} \times \mathbf{B}_{\lambda}] + \frac{e^2}{c} (\tilde{E}_{\lambda} \cdot \mathbf{B}_{\lambda}) \Omega_{\lambda}\right\} \cdot \partial_{\mathbf{p}} f_{\lambda} \\
+ \left\{\mathbf{v}_{\pi} - e \left[\tilde{E}_{\lambda} \times \Omega_{\lambda}\right] - \frac{e}{c} (\mathbf{v}_{\pi} \cdot \Omega_{\lambda}) \mathbf{B}_{\lambda}\right\} \cdot \nabla f_{\lambda} = I_{\text{coll}}(f_{\lambda}),
\]

where \(\tilde{E}_{\lambda} = \mathbf{E}_{\lambda} + (1/e) \nabla \epsilon_{\pi}, \mathbf{v}_{\pi} = \partial_{\mathbf{p}} \epsilon_{\pi}, \epsilon_{\pi} = v_F p \left[1 + \frac{e}{c} (\mathbf{B}_{\lambda} \cdot \Omega_{\lambda})\right].\)

Collision integral:

\[I \propto -\frac{f_{\lambda} - f^{(0)}_{\lambda}}{\tau}.\]

Distribution function:

\[
f_{\lambda} = \frac{1}{e^{[\epsilon_{\pi} - (u \cdot \mathbf{p}) - \lambda \hbar (p \cdot \omega) - \mu_{\lambda}] / T} + 1}.
\]

\(\Omega_{\lambda} = \lambda \hbar \frac{p}{2p^3}\)

Fluid velocity

Vorticity \(\omega = [\nabla \times \mathbf{u}] / 2\)

Anomalous velocity

[D. Xiao, M.-C. Chang, and Q. Niu, R.M.P. 82, 1959 (2010)]
[D.T. Son and N. Yamamoto, P.R.D 87, 085016 (2013)]
[M.A. Stephanov and Y. Yin, P.R.L. 109, 162001 (2012)]
Euler (Navier-Stokes) equation

- Euler (inviscid) equation for the charged electron liquid:

\[
\frac{1}{v_F} \partial_t \left[\frac{wu}{v_F} + \sigma^{(\epsilon,B)} B + \frac{\hbar\omega n_5}{2} \right] + \nabla P + \mathcal{O}(\nabla)
\]

\[
= -enE + \frac{1}{c} \left[B \times \left(enu - \frac{\sigma^{(V)} \omega}{3} \right) \right] + \frac{\sigma^{(B)} u (E \cdot B)}{3v_F^2} + \frac{5c\sigma^{(\epsilon,u)} (E \cdot B) \omega}{v_F}
\]

- Dissipative terms
- Electrostatic and Lorentz forces
- Anomalous terms

where \(w = \epsilon + P \), \(\sigma^{(B)} \propto \mu_5 \), \(\sigma^{(\epsilon,u)} = \mathcal{O}(1) \), \(\sigma^{(\epsilon,B)} \propto \mu \mu_5 \).

- Viscosity terms with shear \(\eta \) and bulk \(\zeta \) viscosities:

\[-\eta \Delta u - \left(\zeta + \frac{\eta}{3} \right) \nabla (\nabla \cdot u) .\]
Energy conservation relation

- Energy conservation equation:

\[
\partial_t \varepsilon + (\nabla \cdot \mathbf{u}) w + O(\nabla) = -E \cdot \left(enu - \sigma^{(B)} \mathbf{B} - \frac{\sigma^{(V)} \omega}{3} \right).
\]

- Viscosity and thermoconductivity terms:

\[
-\eta (u \Delta u) - \left(\zeta + \frac{\eta}{3} \right) (u \cdot \nabla)(\nabla \cdot u) - \kappa \nabla \cdot \left(\nabla T - \frac{T}{w} \nabla P \right).
\]
Electric and chiral currents

- **Currents:**
 \[
 \mathbf{J} \approx -en\mathbf{u} + \sigma\mathbf{E} + \kappa_e \nabla T + \frac{\sigma_5}{e} \nabla \mu_5 + \sigma^{(V)}(\mathbf{\omega}) + \sigma^{(B)}(\mathbf{B}) + \frac{[\nabla \times \omega] \sigma^{(\epsilon,V)}}{2} + \frac{e^2}{2\pi^2 \hbar^2 c} b_0 \mathbf{B} - \frac{e^2}{2\pi^2 \hbar} [\mathbf{b} \times \mathbf{E}],
 \]

- **Continuity relations and Maxwell’s equations:**
 \[
 \partial_t \rho + (\nabla \cdot \mathbf{J}) = 0,
 \]
 \[
 \partial_t \rho_5 + (\nabla \cdot \mathbf{J}_5) = -\frac{e^3 (\mathbf{E} \cdot \mathbf{B})}{2\pi^2 \hbar^2 c},
 \]

 \[
 \varepsilon_e \nabla \cdot \mathbf{E} = 4\pi (\rho + \rho_b),
 \]

 \[
 \nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t},
 \]

 \[
 \nabla \times \mathbf{B} = \mu_m \frac{4\pi}{c} \mathbf{J} + \varepsilon_e \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}.
 \]
Hydrodynamic AHE voltage

The step-like dependence of the AHE voltage signifies the interplay of hydrodynamic and topological effects.

\[U = -\int_0^{L_y} E_y(y) \, dy = U_{\text{hydro}} + U_{CS}, \]

\[U_{CS} = \frac{L_y}{\sigma} \frac{e^3 b_z E_x}{2\pi^2 \hbar^2 c}. \]

\[U_{\text{hydro}} = -\frac{e^3 b_z E_x}{2\pi^2 \hbar^2 c} \frac{e^2 n^2}{N \sigma^2} \times \left[L_y - \frac{2}{\lambda_y} \tanh \left(\frac{\lambda_y L_y}{2} \right) \right]. \]
Spatial asymmetry is the characteristic feature of the Chern-Simons terms in the nonlocal transport.
Summary

1. The **hydrodynamic regime** is possible for charge carriers in solids under certain experimentally realizable conditions.

2. Among the most interesting **hydrodynamic phenomena in solids** are the formation of vortices, the negative nonlocal resistance, the Poiseuille-like flow, the breakdown of Matthiessen's rule, etc.

3. **Consistent hydrodynamics** is needed to correctly describe topologically nontrivial chiral media such as Weyl semimetals.

4. The interplay of the Chern-Simons terms and hydrodynamic effects is manifested in the **hydrodynamic AHE**.

5. Weyl nodes separation can be also manifested in the **spatial asymmetry of the electron flow**.